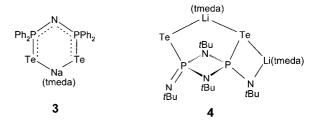
- [12] The structures of racemic **4, 13**, and **14** have been determined by X-ray crystallography. CCDC-184691 **(4)**, CCDC-184693 **(13)**, and CCDC-184694 **(14)** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam. ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [13] For examples of other metal-catalyzed asymmetric reactions that show strong solvent effects on enantioselectivity, see: a) Y. Sato, N. Saito, M. Mori, J. Am. Chem. Soc. 2000, 122, 2371; b) M. Ogasawara, H. Ikeda, T. Nagano, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 2089.
- [14] CCDC-184692 ((1*R*,2*S*)-4) contains the supplementary crystallographic data for this paper.^[12] The single crystal used for the structure determination was obtained from an optically active sample of 4 with 82 % *ee*. The small absolute structure parameter of 0.15(12) derived from the structure determination confirms the chirality of the crystal.
- [15] Following the procedures reported by Dauban and Dodd for preparation of iminoiodane PhI=NSO₂(CH₂)₂SiMe₃ from PhI(OAc)₂ and Me₃Si(CH₂)₂SO₂NH₂ (P. Dauban, R. H. Dodd, *J. Org. Chem.* 1999, 64, 5304).
- [16] 1 H NMR (CDCl₃, 400 MHz) of **19**: δ = 7.89 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.33 (t, J = 7.7 Hz, 2H), 7.16 (m, 4H), 5.19 (m, 1H), 3.06 (m, 4H). The rather high instability of **19** renders it difficult to characterize this compound fully.
- [17] The lower *ee* value in the catalytic reaction than in the reaction between **2** and **19** may arise from a lower loading of **2** in the former case. We once observed that reducing the loading of **2** from 10 to 2 mol% in the amidation of **6** in CH₂Cl₂, under otherwise the same conditions, led to a decrease in the *ee* value of **11** from 46 to 39%. Notice that some other metal-catalyzed asymmetric reactions also show significant dependence of enantioselectivity on catalyst loading (see for example: H. M. L. Davies, T. Hansen, M. R. Churchill, *J. Am. Chem. Soc.* **2000**, *122*, 3063).

A New Approach to Metalated Imido and Amido Tellurophosphoranes**


Glen G. Briand, Tristram Chivers,* and Masood Parvez

Monoanionic ligands of the type $[R_2P(E)NP(E)R_2]^-1$ have been investigated extensively as ligands for both main group elements^[1] and transition metals.^[2] This widespread interest stems from their potential uses as lanthanide shift reagents,^[2] industrial catalysts,^[3] luminescent materials,^[4] or in metal extraction processes.^[5] Recently we^[6] and Stahl et al.^[7] reported the first ambidentate dianionic ligands $[RN(E)P(\mu-NR)_2P(E)NR]^{2-}2$, which adopt a variety of bonding modes, that is N,E,N,N', or E,E', with metal centers.

[**] The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council (Canada).

$$R_{2}P$$
 PR_{2} P

Despite this intense activity, the tellurium analogues of 1 and 2 are unknown. Anionic tellurophosphinic amides of the type $[tBu_2P(Te)NR]^-$ (R = iPr, Cy) can be prepared by lithiation of [tBu₂P(Te)NHR] with LinBu, and chelate complexes of this anion with Group 12 metals have been investigated as single-source precursors of binary metal tellurides.[8] Although ditellurides of the type $[R(Te)P(\mu-NtBu)_2P(Te)R]$ (R = Me, tBu) have been reported, [9] our attempts to oxidize tBuN(H)P(μ-NtBu)₂PN(H)tBu with an excess of elemental tellurium in boiling toluene produced only the monotelluride $[tBuNH(Te)P(\mu-NtBu)_2PN(H)tBu]$ in about 5% yield. [10] Endeavors to generate (TePPh₂)₂NH in a similar manner have also been unsuccessful. Consequently, we adopted a different approach to the synthesis of the anionic ligands 1 (E = Te) and 2 (E = Te), which involves metalation of the neutral imido or amido precursor prior to the reaction with tellurium.[11] Herein, we report the synthesis and X-ray structures of [{[Na(tmeda)][(TePPh₂)₂N]}₂] (3) and [Li(tmeda)]₂[Te(NtBu)P(μ -NtBu)₂P(NtBu)Te] (4), (tmeda = tetramethylethylenediamine), which contain the first examples of 1 (E = Te) and 2 (E = Te), respectively.

The reaction of Na[Ph₂PNPPh₂] with tellurium powder in hot toluene in the presence of TMEDA produced 3 as moisture-sensitive, yellow crystals in 33 % yield. The molecular structure of 3 (Figure 1) was determined by X-ray diffraction^[12] on crystals obtained from hexane. The ditelluroimidodiphosphinate ligand 1 (R = Ph, E = Te) is Te, Te'chelated to sodium and forms a centrosymmetric dimer through Na-Te interactions. This is the first example of Te,Te' chelation to an alkali metal. The coordination sphere of the Na⁺ ions is completed by one N,N' chelating tmeda ligand. A similar structure has been reported for the sodium salt of a monothioimidodiphosphinate $[{Na(thf)_2}[(OPPh_2)(SPPh_2)-$ N]]₂].^[13] The central Na₂Te₂ ring in **3** is almost square-planar (bond angles at Na1 and Te1 are 87.51(5) and 92.49(5)°, respectively) with Na-Te distances of 3.143(2) and 3.181(2) Å, which are close to the value of 3.16 Å predicted from the ionic radii^[14] and much shorter than the weak Na-Te interactions (3.494(3) Å) in the tellurolate [Na(tme $da)_{2}$ [Te(2,4,6-Me₃C₆H₂)].^[15] The P-Te bond lengths of 2.383(1) and 2.403(1) Å are only slightly longer than the values of about 2.37 Å determined for tBu₃P=Te^[16] and amino-substituted tellurophosphoranes.^[9c,17] The shorter P-

^[*] Prof. T. Chivers, Dr. G. G. Briand, Dr. M. Parvez Department of Chemistry University of Calgary Calgary, AB T2N 1N4 (Canada) Fax: (+1)403-289-9488 E-mail: chivers@ucalgary.ca

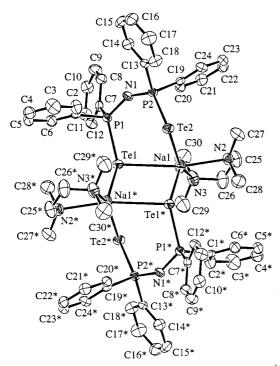


Figure 1. X-ray crystal structure of **3**. Selected bond lengths [Å] and angles [°]: P1-N1 1.591(4), P2-N1 1.589(4), P1-Te1 2.4029(13), P2-Te2 2.3827(13), Na1-Te1 3.143(2), Na1-Te2 3.259(2), Na1-Te1* 3.181(2); P1-N1-P2 143.3(3), N1-P1-Te1 122.18(15), N1-P2-Te2 120.88(15), P1-Te1-Na1 104.20(5), P2-Te2-Na1 93.10(5), Te1-Na1-Te2 84.69(5), Te1-Na1-Te1* 87.51(5), Na1-Te1-Na1* 92.49 (5). Symmetry transformations used to generate equivalent atoms: *-x, -y, -z+2.

Te bond is associated with the two-coordinate tellurium center, which also participates in the longer Te–Na bond (3.259(2) Å) in the six-membered NP₂Te₂Na ring. The ³¹P NMR and ¹²⁵Te NMR spectrum of **3** in [D₈]THF at 235 K reveal single environments for both the phosphorus and tellurium atoms. This observation may be attributed to a fast exchange process involving the Na and Te sites or to dissociation into a monomer in which the Na⁺ ion is solvated by THF. The coupling constant $^1J_{(P,Te)}$ = 1619 Hz is, as expected, significantly smaller than the values of 1663–2095 Hz reported for neutral tellurophosphoranes.^[18]

The treatment of $[Li(thf)]_2[tBuNP(\mu-NtBu)_2PNtBu]$ with tellurium powder in toluene at 80°C in the presence of TMEDA produces 4 as yellow, moisture-sensitive crystals in 19% yield. The molecular structure of 4 (Figure 2) was determined on single crystals obtained from hexane.[19] The structure reveals a unique bonding mode for ligands of the type **2** in which one Li⁺ ion is coordinated in a *Te*, *Te'* fashion, while the second Li^+ ion is N,Te chelated by the dianion. By contrast, the sulfur analogue, 4 (E=S), exhibits bis-N,S chelation to two Li⁺ centers.^[6b] The X-ray structures of $Li[tBu_2P(Te)NR]$ (R = iPr, Cy) were not determined, but chelate complexes of the anion with transition metals are N,Te bonded.[8] The P—Te bond length involving the two-coordinate Te center in 4 is 0.027 Å longer than that involving the threecoordinate Te atom, presumably because the former is associated with the shorter exocyclic P-N bond (1.534(2) versus 1.574(2) Å). The mean value of d(P-Te) in **4** is, as expected, significantly longer by about 0.07 Å than the value

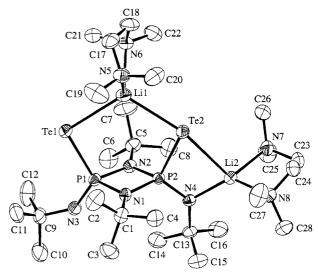


Figure 2. X-ray crystal structure of **4**. Selected bond lengths [Å] and angles [°]: Li1-Te1 2.842(5), Li1-Te2 2.791(5), Li2-Te2 2.865(5), Li2-N4 1.973(5), P1-Te1 2.4515(8), P2-Te2 2.4243(7), P1-N3 1.534(2), P2-N4 1.574(2); Te1-Li1-Te2 113.35(17), N4-Li2-Te2 80.93 (18), N3-P1-Te1 119.94(11), N4-P2-Te2 104.89(9), P2-Te2-Li2 65.59 (10), P2-Te2-Li1 96.51(10), Li1-Te2-Li2 160.06(14), P1-Te1-Li1 97.15(11).

of 2.370(1) Å found for the monotelluride [$tBuNH(Te)P(\mu-NtBu)_2PN(H)tBu$]. The NMR data for **4** in [D₈]toluene demonstrate that the novel, asymmetric coordination of the two Li⁺ ions to the dianion **2** observed in the solid state is maintained in solution at 235 K. Thus, the ⁷Li NMR spectrum of **4** in [D₈]toluene exhibits two well-separated resonance signals at $\delta=0.70$ and 3.88 ppm, while the ³¹P NMR spectrum shows two singlets (with ¹²⁵Te satellites) at $\delta=-113.7$ and -75.3 ppm. Consistently, the ¹²⁵Te NMR spectrum displays two doublets at $\delta=-289$ and -87 ppm. The smaller values of $^{1}J_{(P,Te)}$, 1309 and 1467 Hz, are consistent with the longer P–Te bond lengths in **4** compared to those in **3**.

In summary, the discovery of a new approach to the previously inaccessible ditelluroimidodiphosphinate anion $\mathbf{1}$ (E = Te) and the ditellurodiimidocyclodiphosph(v/v)azane dianion $\mathbf{2}$ (E = Te) paves the way for extensive investigations of the coordination chemistry of these tellurium-centered ligands. Semiempirical PM3 calculations indicate that the success of this method can be attributed to an increase in the nucleophilicity of the phosphorus(III) centers in (PPh₂)₂NH and tBuN(H)P(μ -NtBu)₂PN(H)tBu upon metalation. Details of this study, as well as additional examples of the successful application of this approach to the synthesis of novel NP(v)Te anions, will be discussed in a full account of this work.

Experimental Section

All manipulations were carried out under anaerobic and anhydrous conditions. NMR spectra were obtained on $[D_8]$ THF (3) or $[D_8]$ toluene (4) solutions at 235 K using a Bruker DRX 400 MHz spectrometer.

3-0.25 C_6H_{14} : A mixture of Na[Ph₂PNPPh₂]^[20] (0.100 g, 0.245 mmol), tellurium powder (0.063 g, 0.49 mmol), and TMEDA (0.114 g, 0.982 mmol) in toluene (5 mL) was heated to 80 °C for 3 h. After cooling to 23 °C, the mixture was centrifuged and decanted to remove unreacted tellurium. Yellow crystals of 3-(C_6H_{14})_{0.25} (0.065 g, 33 %) were obtained after one day at 23 °C. Elemental analysis calcd for $C_{31.5}H_{39.5}N_3NaP_2Te_2$: C 47.27, H 4.97, N

5.25; found: C 48.42, H 5.35, N 5.32; $^{31}P\{^{1}H\}$ NMR: δ = 9.5 ppm (s, $^{1}J_{(P,Te)}$ = 1632 Hz); 125 Te NMR: δ = -403.6 ppm (d, $^{1}J_{(P,Te)}$ = 1619 Hz).

4: A mixture of [Li(thf)]₂[*t*BuNP(*μ*-*Nt*Bu)₂*Nt*Bu]^[21] (0.200 g, 0.396 mmol), tellurium powder (0.101 g, 0.79 mmol), and TMEDA (0.368 g, 3.17 mmol) in toluene (5 mL) was heated at 80 °C for 3 h. The mixture was centrifuged and the supernatant was decanted from unreacted tellurium. After removal of solvent under vacuum, the product was redissolved in *n*-hexane (ca. 1 mL). Yellow crystals of 4 (0.062 g, 19 %) were deposited after one day at 23 °C. Elemental analysis calcd for $C_{28}H_{68}Li_2N_8P_2Te_2$: C 39.66, H 8.08, N 13.22; found: C 38.06, H 8.23, N 12.25; ¹H NMR ([D₈]toluene, 235 K): δ = 1.62 (s, 9 H; N*t*Bu), 1.97 (s, 9 H; N*t*Bu), 2.18 (s, 18 H; *μ*-*Nt*Bu), 2.20 (s, 12 H; NMe₂), 2.30 ppm (s(br), 8 H; NCH₂); ³¹P [¹H] NMR: δ = -113.7 (s, ¹ $J_{P,Te}$ = 1467 Hz), -75.3 ppm (s, ¹ $J_{P,Te}$ = 1309 Hz); ⁷Li NMR: δ = 0.70 (s), 3.88 ppm (s); ¹²Te NMR: δ = -289 (d, ¹ $J_{Te,P}$ = 1352 Hz), -87 ppm (d, ¹ $J_{Te,P}$ = 1486 Hz). The values of ¹ $J_{Te,P}$ obtained from the ³¹P NMR spectrum are more reliable than those obtained from the ¹²⁵Te NMR spectrum owing to the broad line widths ($\Delta v_{1/2} \sim 225$ Hz) in the latter spectrum.

Received: May 6, 2002 [Z19245]

- For recent reviews, see: a) S. Silvestru, J. E. Drake, Coord. Chem. Rev.
 2001, 223 117-216; b) J. D. Woollins, J. Chem. Soc. Dalton Trans.
 1996, 2893-2901.
- [2] H. Rudler, B. Denise, J. R. Gregorio, J. Vaissermann, *Chem. Commun.* 1997, 2299 – 2300.
- [3] W.-H. Leung, H. Zheng, J. L. C. Chim, J. Chan, W.-T. Wong, I. D. Williams, J. Chem. Soc. Dalton Trans. 2000, 423–430.
- [4] S. W. Magennis, S. Parsons, A. Corval, J. D. Woollins, Z. Pikramenou, Chem. Commun. 1999, 61 – 62.
- [5] J. G. H. du Preez, K. U. Knabl, L. Krüger, B. J. A. M. van Brecht, Solvent Extr. Ion Exch. 1992, 10, 729.
- [6] a) T. Chivers, M. Krahn, M. Parvez, Chem. Commun. 2000, 463-464;
 b) T. Chivers, M. Krahn, M. Parvez, G. Schatte, Inorg. Chem. 2001, 40, 2547-2553;
 c) T. Chivers, C. Fedorchuk, M. Krahn, M. Parvez, G. Schatte, Inorg. Chem. 2001, 40, 1936-1942.
- [7] G. R. Lief, C. J. Carrow, L. Stahl, Organometallics 2001, 20, 1629– 1635.
- [8] a) M. Bochmann, G. C. Bwembya, N. Whilton, X. Song, M. B. Hursthouse, S. J. Coles, A. Karanlov, J. Chem. Soc. Dalton Trans. 1995, 1887–1892; b) M. Bochmann, G. C. Bwembya, M. B. Hursthouse, S. J. Coles, J. Chem. Soc. Dalton Trans. 1995, 2813–2817.
- [9] a) O. J. Scherer, G. Schnabl, Chem. Ber. 1976, 109, 2996-3004; b) O. J. Scherer, G. Schnabl, Angew. Chem. 1977, 89, 500-501; Angew. Chem. Int. Ed. Engl. 1977, 16, 486; c) S. Pohl, Z. Naturforsch. Sect. B 1978, 33, 610-613; S. Pohl, Z. Naturforsch. B 1979, 34, 256-261.
- [10] G. Briand, T. Chivers, M. Krahn, Coord. Chem. Rev. 2002, in press.
- [11] G. Briand, T. Chivers, G. Schatte, M. Parvez, Abstract No. 475, 84th CSC Conference and Exhibition (Montreal), 2001.
- [12] Crystal data for ${\bf 3\cdot}0.25\,{\rm C_6H_{14}}$: ${\rm C_{30}H_{36}N_3NaP_2Te_2\cdot}0.25\,{\rm C_6H_{14}},~M_r{=}$ 800.29, tetragonal, space group $I4_1/a$, a = 35.7317(12), c =11.0884(3) Å, V = 14.157.2(8) Å³, Z = 16, $\rho_{calcd} = 1.502$ g cm⁻³, F(000) = 6312, T = 173(2) K. Data were collected on a Nonius Kappa CCD diffractometer on a yellow needlelike crystal (0.25 × 0.08 × 0.04 mm³) coated with Paratone 8277 oil and mounted on a glass fiber using ω and ϕ scans. Of the 11182 reflections collected, 6186 were unique $(R_{\text{int}} = 0.040)$ and 4424 were observed $[I \ge 2.00\sigma(I)]$ and used to refine 355 parameters. The structure was solved by direct methods (SIR92) expanded with Fourier techniques (DIRDIF94), and refined by SHELXL97. The non-hydrogen atoms were refined anisotropically. A disordered molecule of n-hexane was also located in the lattice with three carbon atoms (site occupancy 0.5 each) disordered over a wide area with large displacement parameters; these atoms were included with isotropic parameters. Hydrogen atoms were included at geometrically idealized positions and not refined; hydrogen atoms of the hexane solvate were ignored. Refinement by least-squares calculations converged at $R_1 = 0.038$ and $wR_2 = 0.083$.
- [13] J. Yang, J. E. Drake, S. Hermandez-Ortega, R. Rösler, C. Silvestru, Polyhedron 1997, 16, 4061 – 4071.
- [14] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, 1960, p. 514.

- [15] P. J. Bonasia, J. Arnold, J. Chem. Soc. Chem. Commun. 1990, 1299– 1301
- [16] N. Kuhn, H. Schumann, G. Wolmershäuser, Z. Naturforsch. B 1987, 42, 674-678.
- [17] C. Rømming, A. J. Iversen, J. Songstad, Acta Chem. Scand. Ser. A 1980, 34, 333 – 342.
- [18] a) C. H. W. Jones, R. D. Sharma, Organometallics 1987, 6, 1419 1423;
 b) N. Kuhn, G. Henkel, H. Schumann, R. Fröhlick, Z. Naturforsch. B 1990, 45, 1010 1018.
- [19] Crystal data for 4: $C_{28}H_{68}Li_2N_8P_2Te_2$, $M_r = 847.92$, monoclinic, space group $P2_1/c$, a = 17.8810(3), b = 9.7701(2), c = 24.0003(5) Å, $\beta =$ 91.6451(6)°, $V = 4191.10(14) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} = 1.344 \text{ g cm}^{-3}$, F(000) = 1.0451(6)°, $V = 4191.10(14) \text{ Å}^{-3}$, Z = 4, Z = 41728, T = 170(2) K. Data were collected on a Nonius Kappa CCD diffractometer on a yellow plate $(0.20 \times 0.15 \times 0.08 \text{ mm}^3)$ coated with Paratone 8277 oil and mounted on a glass fiber using ω and ϕ scans. Of the 16883 reflections collected 9529 were unique ($R_{\rm int}\!=\!0.028$) and 7266 were observed $[I > 2.00\sigma(I)]$ and used to refine 379 parameters. Structure solution and refinement followed the procedures described above for 3. Refinement by least-squares calculations converged at $R_1 = 0.034$ and w $R_2 = 0.072$. CCDC-184064 and CCDC-184065 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [20] Prepared by a modification of the procedure reported by: J. Ellermann, M. Schütz, F. W. Heinemann, M. Moll, Z. Anorg. Allg. Chem. 1998, 624, 257 – 262.
- [21] I. Schranz, L. Stahl, R. J. Staples, Inorg. Chem. 1998, 37, 1493-1498.

Metallabenzenes and Valence Isomers. Synthesis and Characterization of a Platinabenzene**

Volker Jacob, Timothy J. R. Weakley, and Michael M. Haley*

Dedicated to Professor Gottfried Huttner on the occasion of his 65th birthday

In our group we have developed a convenient method for the preparation of iridabenzenes starting from the C_5 synthetic equivalent Z-3-(2-iodovinyl)-1,2-diphenylcyclopropene (1).^[1] Using this precursor, iridabenzene synthesis can also be carried out in a stepwise manner via an iridabenzvalene intermediate, which could be characterized and converted into the corresponding iridabenzene by thermal treatment.^[2] In addition to varying the coordination pattern at the iridium center and the substituents on the vinylcyclopropene precursor,^[3] we are currently trying to show this concept to be generally applicable for the synthesis of metallabenzenes and

^[*] Prof. Dr. M. M. Haley, Dr. V. Jacob, Dr. T. J. R. Weakley Department of Chemistry University of Oregon Eugene, OR 97403-1253 (USA) Fax: (+1)541-346-0487 E-mail: haley@oregon.uoregon.edu

^[**] This work was supported by the National Science Foundation. V.J. gratefully acknowledges the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. We thank Annie Tykwinski for the cover design. Part 4.^[3]